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A generalization of the Beltrami stress functions

in continuum mechanicsl

by

M. E. Gurtinr
Brown Unlversity

1. Introduction.

In the absence of body-forces the stress equations of

equlilibrium for a continuous medium take the form

0, (1.1)

Tkm,m = Tiem T ka
when referred to rectangular cartesian coordinates.2 Apparently
the first stress-function solution of (1.1) was Airy's [1863]
two-dimensional solution in terms of a single stress function.
Three dimensional generalizations of Alry's stress function

were obtained by Maxwell [1870] and Morera [1892], who established
two alternative solutions of the stress equations of equilibrium,
each involving a triplet of stress functions. Beltrami [1892]
observed that the solutions dus t2 Maxwell and Morera may be
regarded as special cases of a solution to (1.1) which may be

written as

1 The results communicated in this paper were obtained in the

course of an investigation conducted under Contract Nonr-
562(25) of Brown University with the Office of Naval Research.

2 Here as well as in the sequel we use the usual indicial nota-
tion. Thus, Latin subscripts have the range of the integers
(1,2,3) and summation over repeated subscripts 1s implied;
subscripts preceded by a comma indicate differentiation with
respect to the corresponding cartesian coordinate. Further,
eiJk and biJ respectively denote the alternating symbol and

Kronecker'!s delta.
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= = 13
“iam eltipem.icfpi.i,pcl’ P13 q’;j:L : (1.2)

Equation (1.2) degenerates into Mazwell's solution if one takes

P53 0 (1#3); it reduces to Morera's solution if cne sets
Py = O (no séﬁ), and it ylelds Airy's solution if one assumes
that all of the Py 40 except P332 vanish.

Completeness proofs for Beltraml's solution were given
by Morinaga and Néno [1950], Ornstein [1954], Glinther [1954],
and Dorn and Schild [1956]; All of these proofs, however, are
valid only when the boundéry of the region under consideration
conslists of a single closed surface. This fact was noted by
Rieder [1960], who showed that the representation (1.2) is
incomplete. In fact, as shown by Rieder, (1.2) can at most
represent solutions of (1.1) which are "totally self-equilibrated"
in the sense that they correspond to zero resultant force and
moment on every closed surface contained 1n the region. It 1s
at once clear that solutions which are not totally self-equili-
brated do indeed exist whenever the boundary of the region

consists of more than a single closed surface.

3 Beltrami's solution was later independently arrived at by
Gwyther [1912] and Finzi [1934] and has occasionally teen
attributed to them. Actually, the tensorial version (1.2)
of Beltrami's solution seems to have made its first appear-
ance in Finzi's [1934] paper. The result (1.2) was also
rediscovered by Weber [1948], Morinaga and Néno [1950],
Schaefer [1953], and Ornstein [1954]. Related contributions,
a8 well as additional references, may be found in publications
by Kuzmin [1245], Krutkov [1%49], Blokh [1950], Langhaar and
Stippes [19541], Krdner (1954, Marguerre [1955], Truesdell
[1959], and Sternberg [1960]. :
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Section 2 of the present paper contains certaln
preliminary definitions and notatlional agreements. In Section 3
we include a concise version of Rleder's result and subsequently
use a minor variant of Gunther!'s argument to prove that every

\
(sufficiently smooth) totally self-equilibrated solution of (1.1)

admits the representation (1.2).

In Section 4 we first introduce the stress-function

solution of (1.1) given by

= 2 -
“km = Cktp®nia®ii,pq t Y koo, < Yy, g
’ y (1.3)
q’ij-‘?,ji"v‘bk:o'

We then prove that this solution is complete in the sense that
every (not necessarily totally self-equilibrated) solution of
(1.1) may be represented in the form (1.3). It follows as an

immediate corollary of this result that every solution of (1.1)

may be decomposed into the sum of a totally self-equilibrated

solution and a biharmonic solution.

2. Preliminary definitions. Equilibrated stress fields.
Throughout the paper @ will denote a bounded region of

three-dimensional Euclidean space. The region R will be either
open or closed, On the other hand R will always designate a
bounded open region whose closure is K. We call R a regular
region 1f its boundary consists of a finite number of non-
intersecting closed regular surfaces, the latter term being used
in the sense of Kellogg [1929] (p.112).
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We write féZCN(t?) if and only 1f f 18 a real-valued
function defined and N times continuously differentiable on .
We say that T\ 18 an equilibrated stress field on R

if and only if Tkmé

Tem,m = 0, Tm=Tm o0 R (2.1)
We say that T, 18 an equilibrated stress field on R if and only

km

if Tkm is an equilibrated stress field on R and T is continu-

ous on R.

km
S a closed regular surface contained in {£. Further let Tk be

Suppose T, 1s an equilibrated stress field on ® and

the surface traction of Tem O0 S defined at every regular point
of S through

T

e = Ti®n (2.2)

n, being the unit outward normal of S. Then we call the vector
L(S) with components

Lk(S) =£ T, 4A (2.3)

the resultant force of T, . on S and the vector M(S) with

components
mk(s) = Jslekijxifrjcm (2.4)

the resultant moment (about the origin) of Tym ©1 S.

An equilibrated stress field on @ will be called
totally self-equilibrated if and only if its resultant force

and moment vanish on every closed regular surface contalned &n ®.
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The following elementary result further clarifies the
difference between equilibrated and totally self-equilibrated
stress flelds.

2.1 Theorem. Let R be a regular reglion whose boundary consists

of the closed surfaces B, (a=1,2,...,N) and let T, be an

km
equilibrated stress field on R. Then T, 18 totally self-

equilibrated if and only if its resultant force and moment

vanish on each By .

Proof. If v 1s totally self-equilibrated then, by definition,

¥m
L(By) = M(By) = 0 (a=1,2,...,N). (2.5)

Conversely, (2.5), by virtue of (2.1), (2.3), (2.4), and the

divergence theorem, implies that Tm

We now turn to a characterization of the type of region

is totally self-equilibrated.

on which there exist equilibrated stress fields which are not
totally self-equilibrated. Let S henceforth denote a closed

regular surface. We say that @ is periphractic4

if and only if
it contains an S enclosing at least one point that does not
belong to ®. Thus a periphractic region has "holes". The
spherical shell R = {x: a < Ix| < b} 1s periphractic while the
open sphere R = {x: |x| < b} is not periphractic. Also, we
note that a regular region is periphractic if and only if its

boundary consists of more than a single closed surface.

+ This term was apparently introduced by Maxwell [1873](Arts.18,

22).
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2.2 Theorem. Thers exlst equilibrated stress fields on ® which

are not totally self-equilibrated if and only if R is periphractic.

Proof. We show first that R is periphractic whenever there
exists an equilibrated stress fleld on @ which is not totally
self-equilibrated. Indeed, this must be so since every equili-
brated stress field on R is totally self-equilibrated provided
R 1s not periphractic, a fact which follows from (2.1) and

the divergence theorem. To prove the converse assertion assume
R 1s periphractic, fqom which it follows that there exists an
S contained in R enclosing a point which does not belong to & .
Choose the origin of the coordinates at this point and consider
the stress field

X
- MR —

T, (x) mE s XCR ( 1;lo...const.). (2.6)
Clearly T, is equilibrated. Moreover, an elementary computation
establishes that

_ _ iz
Lk(S) = £ TidA = - =3 AN O, (2.7)

and consequently T, 18 not totally self-equilibrated.

km

3. The Bei.:rami representation.

We consilder next the Beltrami stress functions and
clte a well known fact, the truth of which may be confirmed by
direct substitution.

3.1 Theorem. Let g,,& C°(R), with 9y = 93y» 2nd let

Yim = Skip®miqPiy,pq & R (3.2)
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Then Tkm is an equilibrated stress field on R,

An equilibrated stress field T, on R which admits the
representation (3.1) in terms of a symmetric tensor field
9y 4€ ¢3(R) 1s said to admit a Beltrami representation on R. With
a view toward examining the completeness of this representation
we state and p.sove the following theorem, which is due to
Rieder [1960].

3.2 Theorem. Let T\m admit a Beltrami representation on R.
1s totally self-equilibrated.

Then =T

km
Proof. Let S be an arbitrarily chosen closed regular surface

contained in R. Then (2.2), (2.3), (3.1) imply

Lk(s) = £ Ty dA = £ ekipequ?ia,pqpmdA' (3.2)

Filx k and let v = ¢

3 = CapPeg,ps B0 that (3.2) becomes

Lk(s) = - £ equvJ’qnmdA. (3.3)

But it follows from a well-known corollary of Stokes' theorem
that 1f v, cl(R), then

£squvJ,qpm§A = 0 (3.4)

and hence Lk(S) = 0. Similarly, in view of the identity

€13k%1pq = OpPkq " 2idwp (3.5)

and since ¢1J = ¢J1’ one has
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Mi(s) = iaikaJ'cmnmdA = £ eikajek‘epemrqtpzr,pql\ndA
ol e e TR, , (3.6)

B £ earq(XsP1r, 5 P10 %3Py, 1) s gPdh = ©

-

Thus T, is totally self-equilibrated and the proof i1s complete.

km
The following result 1s an immediate consequence of
Theorems 2.2 and 3.2.

- 3.3 Theorem, Let R be periphractic. Then there exist

equilibrated stress flelds on R which do not admit a Beltrami

representation.

In fact the equllibrated stress fleld defined by (2.5)
on the spherical shell R = {x: a < |x| < b} does not admit such
a representation. Thus the Beltrami solution, and hence also
the Maxwell and Morera solutions, are incomplete for periphractic
regions. This important limitatlion appears to have been largely
overlooked in the literature. It 1s natural to ask what class of
equilibrated stress fields does admit a Beltraml representation
regardless of whether or not the region is periphractic. The
next theorem answers this question.

3.4 Theorem. (Completeness of the Beltraml representation).

Let R be a regular region whose boundary consists of the closed

surfaces Bgq (c=1,2,...,N) and suppose each By 1s three times

continuously differentiable. Let T,  have the following
properties:
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(a) Tm€C®® , 7 _€C3R);

(v) Tym is a_totally self-equllibrated stress field

on R.

Then Tim admits a Beltrami representation on R.

By virtue of Theorem 2.1, the hypothesis (b) may be
replaced by the seemingly weaker assumption that Ty is an
equilibrated stress field on R whose resultant force and moment
vanish on each By . For the special case N=1 the region R is
not periphractic and thus, according to Theorem 2.2, the hypo-
thesis that Ty is totally selffequilibrated may be replaced by
the requirement that T\ is merely equilibrated.5

A proof of Theorem 3.4 may be based on the theorem of
the vector potential. Indeed, Theorem 3.4 may be regarded as
a tensorial counterpart of the latter theorem, which we now cite.

3.5 Theorem. (Existence of a vector potential.) Let R and Bg

meet the same hypotheses as in Theorem 3.4. Let vy have the

following propertiles:
(a) v,€C%(®) , v,c c3(R);
(v) I vyndA = O for every closed regular surface
S

S contained in R.

Then there exist wigjc3(n) such that

vy T e,y & R. (3.7)

A proof of this theorem is given by Lichtenstein [1929](pp.101-106).

> me completeness proofs given by Morinaga and Nono [1950]
Ornstein [1954], Gunther [1954], and Dorn and Schild [1953]
are, in fact, valid only for N=1 since in both of these
investigations the restriction that <, be totally self-
equilibrated is omitted. (See Theorelf®3.3.)
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Proof of Theorem 3.4. The added restriction that T, 1s totally

km
self-equilibrated allows us to use Gunther's [1954] completeness

proof in the present circumstances. In order to render the
present paper senslbly self-contained we include the following
version of Ganther's argument.

Define BiJkZ on R through

BiJk,@ = emikenjz'rmn . (3.8)
Then (3.5), (3.8), and the second of (2.1) imply

Tyg = i € imn® Jkftmint (3.9)

By b = Bis1y = - Biyrg = - Bugiy = Byigy - - (3.10)

Since Tym is a totally self-equilibrated stress field

£ TyynydA =0, £ (eidkxjka)nmgA =0 (3.11)

for every closed regular surface S contained in R, Thus and by

. e3(r), cijg;c3(a) such that

Theorem 3.5 there exist bijé

T13 = ®pdP1q,p * “15¢%5"km = ®mpqiq,p (3.22)
From (3.5), (3.9), (3.10), (3.12) follows
Biat = ¢p3tPpic, 1 Ppa,) ¢+ GlmyBauty = Enypeas,y - (3:23)
Now define

1
Dyg * 5 SpnPpt = - Dyyy - (3.1%)
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Then the first of (3.13) becomes

By ke = 2[Dyyp 1-Dy 45 i 1- (3.15)

Further, from the second of (3.13), (3.14), (3.15),

8mJZ[ciﬂ,J'2(xleip)’J + QDZIJ] = 0, (3.16)

Accordingly the tensor multiplying emdl is skew symmetric with
respect to J and £ and hence

(cyp-2x Dps )5y = (egy-2xDyy)sp = 2(Dyy gDy, ). (3.17)
Next define |
Fip=cyp - axleip (3.18)
and conclude from (3.17) that
Fig,3 - F1j,8 = 2(Dyy9-Dpyy). (3.19)
Thus, and by (3.14),

F(am),k ~ FOm),1 ¥ Pl lm = "Pnake (3.20)

Consequently, (3.15) implies

Bugid = “Plicg), 21 = Foa),k3 * Flet), 13 * F(ag),e (3-21)

Finally, let Pyq = F(“). It is clear from (3.1%4), (3.18), and
the smoothness of biJ’ 4y that ¢1J€_03(R). Moreover Py 4=%44
and (3.9), (3.21), imply (3.1). This completes the proof.
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4, A generalization of the Beltrami representation.

In this section we establish a solution of (2.1) in
terms of stress functions which is complete even if Tkm is not
totally self-equilibrated and regardless of whether or not the
region 1s periphractic.

A function f¢€ c'*(R) that satisfies vl‘r = 0 on R will be
called biharmonic on R. The next theorem, which is readily
verified by substitution, supplies a solution of (1.1) in terms
of a bilharmonic vector fleld.

4.1 Theorem. Let 1, be biharmonic on R and let

Tiem = Va("’k,m*“‘m,k) "V, g & R (8.2)

Then Tym is an equilibrated stress field on R.
The solution (4.1) is evidently incomplete since it

implies that T is biharmonic. Now consider the stress field

m
defined by

Tm = ekipequ?ij:pq + ve(’bk’m-'-‘l’m'k) - \I’J’Jm on R (4.2)

where

‘PiJ = q>J1 f ] Vu\bi =0 on R (4-3)

By Theorems 3.1 and 4.1 T)m is an equilibrated stress fleld
on R, The representation (4.2) of an equilibrated stress field
T, 1D terms of a symmetric tensor field ¢1J€:C3(R) and a bi-
harmonic vector rield‘\ln1 will be called a generalized Beltrami

representation on R.
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4 .2 Theorem. (Completeness of the generalized Beltrami repre-

sentation.) Let R be an integrable region. Let <, be an

km
equilibrated stress field on R and suppose tkmgfc3(R). Then

Tim admits a generalized Beltrami representation on R.

The following trivial lemma will facilitate the proof
of Theorem 4.2,
4.3 Lemma. Let | be integrable and let £€ c(K), £C ¢N(R),
with N > 2. Then the equation

vug =f on R (4.4)

has a solution gefCN+2(R).
Proof. Define p and g on R through

£(& )
p(x) =-1l;ﬁf]-;f-§|)—dv s 8(x) =-%ff1ff%TdVE (4.5)
R R =

Thern? pcc™1(R), g€ C™2(R) and v% = £, vog =p on R. Thus
g 1s a solution of (4.4).

n

Proof of Theorem 4.2. By hypothesis and Lemma %.3 there exists

5¢ -
functions fijéﬁc (R), with fiJ = fJi’ such that

V#fij =T,y on R. (4.6)

Further, one has the identity

4 . .
V' = S 1p® 38 £%pariatul qt, ruich v (e

+£ -

ip,pJ pJ,pi) qu,pqu
(4.7)

as is readily verified by expanding the flirat term on the right

hand side with the aid of (3.5). Now define

6TSee, for example, Courant [1962 ](p.246).
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Pps = epqrestufqt,ru s ¥y "fip,p on R (4.8)

4
80 that 9, ,€ c3(R), with 9,4 = 94, and §,€ C (R). Also, (4.6),
(4.7), (4.8) imply (4.2). Thus the proof is complete since
v“xbi = 0 on R according to (4.2) and the first of (2.1).
It 18 of interest to note that the smoothness hypotheses

which are sufficlent to prove the completeness of the generalized

Beltrami representation (Theorem 4,2) are much less stringent
than those used to prove the completeness of the Beltraml repre-
sentation (Theorem 3.4).

The next theorem is an immediate consequence of
Theorems 4.2, 3.1, 3.2, 4.1,
4 .4 Theorem. (Decomposition of an equilibrated stress field).

Let R be an integrable region. Let T L8 an equilibrated stress
field on R and suppose T, & C3(R). Then 7, admits the decomposi-

tion

] "
“m ™ m * Tim o8 R

!
where 7 15 a totally self-equilibrated stress field on R, while

"
1km i1s an equilibrated stress field which is biharmonic on R.
The theorems proved in this paper are strictly

analogous to certain results in vector analysis. It follows
from Helmholtz's theorem that every sufficliently smooth vector

field v

3 which is defined on a suitably regular region R and

meets

Vi1t O on R, (4.10)
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admlits the representation
= 2% =

Further, it 18 a direct consequence of (4.11) that v, may be
written in the form
1 1

VLtV

on R, (4.12)
where the total flux of v; across every closed surface S in R

vanishes, 1i.e.

L v;nidA =0, (4.13)

"
whereas vy 1s harmonic. The stress equations of equilibrium

are an analog of (4.10), the generalized Beltrami representation
18 a counterpart of (4.11), and the decomposition (4.9) is
analogous to (4.12). As 1is apparent from Theorem 3.5, the
harmonic potential 79 in (4.11) may be set equal to zero (with-
out loss of completeness) provided the total flux of vy across
every closed surface in R vanishes. Analogously, we conclude
from Theorem 3.4 that the biharmonic stress function ¥, in (4.2)

may be set equal to zero whenever the resultant force and moment

of im vanishes on every closed surface in R.
Consider finally the inhomogeneous stress equations of
equilibrium
Temm t Pk =0 Tym = T o0 R (4.1%)

in which Fk denotes the body force density. Since we have
already established a complete solution of (4.14) with P, =0,
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the case in which the body forces fall to vanish is disposed of
if we exhibit a particular solution of (4.14). Such a solution
is given by (4.1) provided §, satisfies

V‘&\bk = - Fk on R . (4.15)

A solution of (4.15), in turn, is easily exhibited with the aid
of an iterated Newtonian potential such as the one used in the

proof of Lemma 4.3.
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